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Ship Squat in Water of Varying Depth 

T.P. Gourlay 
 
SUMMARY 
 
Two theories are described which predict ship squat in water of varying depth. Firstly, 
a one-dimensional theory is proposed for a ship in a narrow channel of varying depth. 
This is solved analytically in the case of a step depth change, and numerically for 
general depth profiles. Secondly, a slender-body theory is discussed for wider 
channels or open water. A numerical method is developed and used to find the squat 
of a ship passing a step depth change. 
 
1. INTRODUCTION 
 
Ship squat is the combined effect of midship sinkage (which is usually downward) 
and trim angle (which can be either by the bow or stern) caused by the hydrodynamic 
pressure changes beneath a moving vessel. Squat tends to decrease the underkeel 
clearance as the ship’s speed increases (up to a certain point), and may cause a vessel 
to ground in shallow water, despite it having sufficient water depth at static draught.  
 
The problem of ship squat in water of constant depth has been widely studied over 
recent decades. Most of this research has been experimental and empirical, using 
regression techniques to fit sinkage and trim as functions of hull and environment 
parameters (see e.g. [1,2,3]). Pioneering work in constant-depth theoretical squat 
prediction was produced by Havelock [4], for a slender ship in open water of infinite 
depth; also Constantine [5] for a ship in a shallow, narrow channel; Tuck [6] for a 
slender ship in shallow open water; and Tuck [7] for a slender ship in a shallow 
channel of general width. In terms of steady subcritical squat, little improvement has 
since been made or needed to be made on these original theories. One exception is the 
transcritical speed range, where nonlinear and/or dispersive terms must be added to 
the original equations (see e.g. [8,9] ). However, these terms are relatively 
insignificant at the lower subcritical Froude numbers at which bulk carriers and 
containerships generally travel. 
 
Interest in the problem of ship squat in non-constant depth has come about through 
the grounding of ships in shoaling water. For example, the 1992 grounding of the QE2 
in Vineyard Sound, Massachusetts [10] was partly attributed to unsteady squat. In an 
investigation into the incident [11], researchers predicted the squat of the ship using 
constant-depth formulae, as there were no methods available for non-uniform depth. 
Then, as now, the best estimate of squat in non-uniform depth was obtained by using 
the average depth under the ship in the constant-depth formulae. However, it was not 
known whether this method would under-predict or over-predict the squat. 
 
The extension of constant-depth theories to varying depth has to date received little 
attention, partly because of the difficult unsteady nature of the problem. Plotkin 
[12,13] solved the slender-ship problem for bottom topography that varies 
sinusoidally with small amplitude in the direction of travel only, by finding the 
resulting perturbation to the constant-depth solution. Tuck [14] discussed the 



 

extension of variable-depth theory to include depth changes transverse to the direction 
of travel. 
 
Drobyshevskiy [15] put forward a slender-body method for a ship passing a step 
depth change, using a line of sources distributed along the step. However, the present 
author believes that the omission of important time-derivative terms in the quasi-
steady analysis compromises those results. 
 
Several experimental studies have been made into ship squat in varying depth, both at 
model scale and to a lesser extent at full scale. Model scale results were obtained by 
Edstrand & Norrbin [16], Ferguson et al [17], Duffield [18] and Renilson & Hatch 
[19]. Some of these will be discussed later with reference to the theoretical 
predictions. Recently, some full-scale results have been obtained using differential 
GPS measurements [20,21]. Although accurate, these are difficult to compare with 
theory due to the complex topography and non-constant ship speed. 
 
We shall now seek to solve the problem of ship squat in non-uniform depth, for the 
cases of: 

1. a narrow channel of arbitrary cross-sectional shape 
2. open water or a channel of general width 

 
Once the governing equations are developed, numerical algorithms for solving them 
will be discussed. Predictions for sinkage and trim will be given and compared 
qualitatively with experimental results. 
 
2. SQUAT IN A NARROW CHANNEL 
 
2.1 THEORY 
 
Consider a ship travelling at constant speed U in a channel of variable cross-sectional 
area )(0 xS , where x is the earth-fixed coordinate along the axis of the channel. The 
waterline width of the channel is w(x), and the undisturbed mean depth of the channel 
is )(/)()( 0 xwxSxh = . For this theory the depth may vary in the transverse as well as 
the longitudinal direction, and the ship need not be moving along the centreline of the 
channel, as long as it is moving in the direction of the axis of the channel. 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1:   Problem Formulation 
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In terms of the body-fixed coordinate X, whose origin is at midships, the ship’s local 
beam and section area are B(X) and S(X) respectively. The earth-fixed and body-fixed 
coordinate systems are chosen to coincide at time t=0, so that they are related by 

UtxX += . 
 
Linearized inviscid one-dimensional theory will be used to solve this problem. One 
advantage of the linearized approach is that the ship may be considered vertically 
fixed in its rest position for the purposes of calculating the flow field (it is inconsistent 
to do this if using nonlinear theory [22] ).  
 
The one-dimensional theory is valid provided that the channel is narrow and shallow 
compared to the ship’s length, and changes in the ship and channel dimensions occur 
slowly in the x-direction [5,23]. In this case the only significant velocity component is 
in the x-direction, and this velocity is uniform across a channel cross-section. 
Therefore the velocity potential φ is a function of x and t only. The free surface height 
ζ is also uniform across the channel, so that the other spatial dimensions (y and z) are 
effectively removed from the problem. 
 
Under these assumptions, the continuity and Bernoulli equations determine the 
unknowns ζ(x,t) and φ(x,t). The one-dimensional continuity equation is written in the 
same way as for open-channel flow [24, p.453] as 

0)( =
∂
∂

+
∂
∂ Au

xt
A        (1) 

where u is the longitudinal fluid velocity ( xφ= , subscripts indicating derivatives) and 
A(x,t) is the local cross-sectional area taken up by the water. With the ship present, 
this is equal to the undisturbed area 0S , minus the submerged section area of the ship 
S, and adding the difference in area due to the rise or fall of the free surface. 
Therefore 
 ζ)(),( 0 BwSStxA −+−=      (2) 
Substituting this into the continuity equation (1) gives the unsteady continuity 
equation for flow past a ship in a channel. Note that since )(XSS = and UtxX += , 
the x and t derivatives become 
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where the primes denote differentiation with respect to the body-fixed coordinate X. 
B(X) is differentiated in the same manner.  
 
For ship and channel configurations in which 0/ SS and wB / are small quantities, u, 

tφ and ζ are all small quantities, so that we may neglect terms of second order in any 
of these quantities. In this case the linearized version of equations (1) and (2) becomes 
 0)()(' 0 =++− xt uSwXSU ζ     (3) 
 
The other equation to be used is the Bernoulli equation applied on the free surface. 
Written in earth-fixed coordinates, this becomes 
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which linearizes to 
 0=+ tg φζ  
This, combined with the continuity equation (3) to eliminate ζ, results in the equation 
for linearized unsteady one-dimensional flow around a ship in a non-uniform channel: 
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In the case where the channel is of constant width w but variable depth h(x), this 
simplifies to 

w
XSUh

g xx
tt )(')( −=− φ

φ
     (5) 

 
This result was given in [25], with the velocity potential in that article scaled with 
respect to U.  It is a one-dimensional wave equation with a forcing term. Therefore in 
an unsteady situation, such as when a ship is passing depth changes, one-dimensional 
travelling waves may be radiated away from the ship. When a ship is in constant 
depth, the flow is steady, with no radiated waves. 
 
The boundary conditions for equation (5) are that there should be no disturbance far 
from the ship, i.e. that xφ and tφ  should both vanish as ±∞→x . 
 
Once equation (4) or (5) is solved for the velocity field, the pressure on the ship’s hull 
can be found using Bernoulli’s equation. In terms of the hydrodynamic pressure p, 
which is the excess above hydrostatic pressure, Bernoulli’s equation  
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applies throughout the fluid. Therefore the hydrodynamic pressure is given to first 
order as  
 tp ρφ−=  
in the earth-fixed coordinate system. This pressure is integrated over the ship’s hull at 
each instant in time to obtain the time-varying heave force and pitching moment on 
the ship. Hydrostatic balancing then allows the time-varying sinkage and trim to be 
determined in the same way as for steady flow [6]. 
 
It is appreciated that the time-dependent force and moment will tend to produce 
dynamical oscillations in the heave and trim as well as overall changes. However, the 
natural period of both heave and pitch is generally significantly less than the time 
taken for the ship to experience depth changes. For example, a 300-metre ship will 
generally have natural heave and pitch frequencies of around 8-10 seconds [26]. Even 
for the drastic case of this ship passing a step depth change at 20 knots, the time taken 
for this to occur (30 seconds) is significantly larger than the natural heave and pitch 
periods. Therefore we may expect that dynamic effects will be small, and that 
hydrostatic balancing should closely estimate the mean sinkage and trim. We also 
expect that the amplitude of any superimposed dynamical oscillations will be small. 
 
 
 
 
 



 

2.2  ANALYTIC SOLUTION FOR A STEP DEPTH CHANGE 
 
Equation (5) has an exact analytic solution in the case of a ship passing a step depth 
change in a channel of constant width. This is given in [25] with more detail shown in 
[23]. This shall be used as a test of the general numerical method. 
 
Note that one of the assumptions of one-dimensional theory, that of slowly-varying 
channel dimensions, is actually violated at the step. However, Lamb [27, p. 262] 
showed that, provided the flux xwhφ  and free surface height ζ are continuous at the 
step, open channel flow will still be accurate outside the immediate vicinity of the 
step. The same analysis shows that one-dimensional flow will also still be applicable 
for flow past a ship. Therefore the error, due to violation of the slowly-varying 
assumption, only occurs in a small region close to the step, and the theory may 
justifiably be used for overall quantities such as sinkage and trim. 
 
2.3 NUMERICAL METHOD 
 
A finite-difference method will be outlined here for solving the governing equation 
(5) for general depth profiles, in the case of a constant-width channel.  
 
Because of the first derivative term xxh φ , centred-difference schemes to solve for φ 
are unstable according to the Neumann criterion [28, p.155]. To overcome this 
difficulty, we differentiate equation (5) with respect to x and write it in the form 
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In this way we can use centred differencing to solve instead for xhφ , which gives the 
time-stepping routine 
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where xhf φ=  and ),( nj
n
j txff = . tδ is the time step, js  is the parameter 

2)/( xtgh j δδ and )( jj xhh = . This procedure is numerically stable, according to the 
Neumann criterion, provided that 1≤js  throughout the computational domain.  
 
In order to avoid numerical reflection from the boundaries, the computational domain 
is chosen to be large enough that waves cannot propagate to the boundaries by the 
time the final time step is reached. Therefore our boundary conditions are that 0=f  
at the upstream and downstream boundaries. 
 
In the case where the ship starts in water of constant depth, the steady-state solution 
[7] 
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can be used as an initial condition at the first two time levels. Here hF  is the depth-

based Froude number ghUFh /= . In the case where the ship starts in non-uniform 



 

depth, the above expression (with )(xhh =  in the definition of hF ) provides a 
reasonable quasi-steady estimate of the initial flow. 
 
Because the governing equation (6) is a wave equation, the finite-difference method is 
also prone to producing spurious travelling waves radiating away from the ship’s bow 
and stern. In order to minimize these, a fore-aft-symmetric “cusped” hull was 
considered, which has a very fine bow and stern at which 0=′′S . In terms of the 
shiplength L and maximum beam and section area maxB  and maxS respectively, the 
hull’s local beam and section area are defined by 
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The radiating waves were also minimized by choosing a small grid interval xδ . 
However, this increased the problem of numerical drift [23], so a compromise had to 
be reached in order to obtain accurate results.   
 
2.4 RESULTS FOR A STEP DEPTH CHANGE 
 
The numerical results agreed with the analytic solution previously discussed. Further 
results will be presented here, for the case of a ship passing a step depth change into 
shallower water. We shall only be considering the scenario in which the flow is 
subcritical on both sides of the step (i.e. 1<hF  in both regions). Although the 
analytic and numerical methods are both still valid for supercritical flow, the validity 
of one-dimensional theory itself is questionable in this case [23, p.13], besides which 
the fully-subcritical case is by far the most common in practice. 
 
As discussed in the preliminary results of Gourlay & Tuck [25], the passage of the 
ship past the step results in two travelling waves, each radiating out from the step in 
opposite directions. 

 
These waves start being formed when the ship’s bow passes the step and are 
completed when the ship’s stern passes the step. They then radiate out to infinity (in 
the absence of dissipation). While the ship is passing over the step, the waves act to 
decrease the flow speed past the ship. Even once the ship’s stern has passed the step, 
the flow speed past the hull is still affected until the wave travelling in 0<x  
completely overtakes the ship. 
 
In the case that the ship is passing a step depth change into deeper water the opposite 
occurs – the velocity waves act to increase the flow speed past the ship. 
 
The effect of these waves on the midship sinkage is shown in Fig. 2. Because the ship 
is fore-aft symmetric, the vertical force on the ship in its rest position (Z) translates 
directly into midship sinkage (s) through the relation 
 sgAZ Wρ−=  



 

where WA  is the waterplane area. Therefore Fig. 2 represents both the scaled vertical 
force and scaled midship sinkage. For these results the ratio between the two depths is 
0.75, the channel’s width is the same as the initial depth, and the depth-based Froude 
number is equal to 0.143 in the deeper water. The vertical axis is scaled such that 
the results are valid for any values of the parameters having the ratios described 
above. 
 

 
Fig. 2:   Scaled vertical force or midship sinkage for a ship passing a step depth 

change to shallower water in a narrow channel 
 

It is seen that, rather than moving smoothly from the deep-water to the shallow-water 
steady state value, there is a lag which results from the flow retardation due to the two 
waves. This means that the vertical force does not reach the steady state value until 
after the ship’s stern passes the step; also, it at no time “overshoots” the shallow-water 
value. 
 
The transient trim moment is shown in Fig. 3. The vertical axis is again scaled such 
that the results for this hull shape are valid for any values of the parameters for which 
the ratio between the two depths is 0.75, the channel’s width is the same as the initial 
depth, and the depth-based Froude number is equal to 0.143 in the deeper water. 
 
For a fore-aft-symmetric ship, the trim moment M is related hydrostatically to the trim 
angle through the relation 
 θρ WgIM =  
where θ is the bow-up trim angle and  
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Therefore Fig. 3 also shows the bow-up trim angle, scaled appropriately. We see that, 
apart from a small bow-down trim (i.e. trim by the bow) as the bow passes the step, 
the trim is strongly bow-up (i.e. trim by the stern) while the ship is passing the step. 
This bow-up trim continues after the stern passes the step. 



 

 
Fig. 3:   Scaled bow-up trim moment or trim angle for a ship passing a step depth 

change to shallower water in a narrow channel 
 

The results for midship sinkage and trim can be easily combined to give the transient 
bow and stern sinkage, which are shown in Fig. 4. 

 
Fig. 4:   Bow and stern sinkage for a ship passing a step depth change to shallower 

water in a narrow channel 
 

For the case of a ship passing a step depth change to deeper water, the calculated 
vertical force and trim moment are almost the mirror image of the deep-to-shallow 
case. That is, the ship experiences a bow-down trim while passing into the deeper 
water, and the midship sinkage moves slowly to the steady-state value. 

 
 
 



 

2.5 RESULTS FOR A SMOOTHLY SHELVING SEA FLOOR 
 
Numerical results were obtained for the case of a channel whose floor slopes at a 
constant angle along the axis of the channel. In this case it was found that the flow 
field was indistinguishable from the “quasi-steady” approximation given by equation 
(7), with )(xhh =  in ghUFh /= .  
 
2.6 RESULTS FOR A RAMP BETWEEN TWO CONSTANT DEPTHS 
 
The transient midship sinkage and trim for a ship passing a ramp between two 
constant depths are shown in Figs. 5 and 6. The quasi-steady approximations obtained 
using equation (7) are also shown for comparison. It is seen that the midship sinkage 
changes almost linearly between the two steady-state values, while the trim remains 
bow-up over the entire length of the ramp.  
 
The quasi-steady approximation provides a good estimate to the full unsteady 
solution, giving very similar sinkage and slightly under-predicting the trim. 
 
The ramp for which results are shown is three times the length of the ship; shorter 
ramps produced larger bow-up trim angles, and longer ramps smaller bow-up trim 
angles. 

 
Fig. 5:   Scaled vertical force or midship sinkage for a ship passing a ramp between 

two constant depths in a narrow channel. Plotted as a function of time, with the points 
at which the bow or stern passes the start or end of the ramp indicated.  



 

 
Fig. 6:   Scaled bow-up trim moment or trim angle for a ship passing a ramp between 
two constant depths in a narrow channel. Plotted as a function of time, with the points 

at which the bow or stern passes the start or end of the ramp indicated.  
 
3. SQUAT IN OPEN WATER OR A CHANNEL OF GENERAL WIDTH 
 
3.1 THEORY 
 
For this problem, slender-body inviscid theory will be used. The flow is divided into 
two regions: an “outer” region far from the ship, and an “inner” region close to the 
ship. Governing equations are found for the flow in each of these regions, starting 
with Laplace’s equation and the kinematic and Bernoulli boundary conditions. The 
two flows are then matched across the interface. The method is a simple extension of 
the constant-depth approach developed by Tuck [6]. 
 
The coordinate system used is the same as for the narrow-channel case, except that we 
also define the vertical coordinate ( z, centred at the still water line) and transverse 
coordinate ( y, centred at the ship’s centreline). The depth is allowed to vary in both 
horizontal directions, so that ),( yxhh = . 
 
In the outer region, the shallow-water assumption states that the vertical length scale 
is small compared to the horizontal length scales (which may be the ship length or 
wavelength). The resulting asymptotic analysis shows that, to leading order, the 
velocity potential is independent of z and satisfies the equation 
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in the earth-fixed coordinate system. The equivalent version of this equation was 
obtained by Plotkin [12] in body-fixed coordinates. The earth-fixed equation above is 
oblivious to the presence of the ship, and is the same as that given by Stoker [24] to 
describe long waves propagating in shallow water. 
 



 

In the inner region, the length scales in both the y and z directions are small compared 
to that in the x direction. As such, Laplace’s equation and the boundary conditions 
effectively revert to a two-dimensional problem in the y-z plane. The inner flow is 
driven by the changing cross-sectional area S of the ship’s hull, which causes water to 
be pushed aside when S is increasing with X, and pulled in when S is decreasing with 
X. The behaviour of this inner flow further from the hull provides the boundary 
condition which drives the outer flow. 
 
Reanalysis of the inner flow for water of non-uniform depth shows that the method is 
still valid when depth changes occur in the x-direction.  
 
If the bottom slope is not large compared to h/L, then the depth is effectively constant 
over the whole of the inner region. Therefore if only symmetric depth changes occur 
in the y-direction, i.e. ),(),( yxhyxh −= , and the channel walls are symmetric about 
the ship’s centreline, then the matching process goes over unchanged from the 
constant-depth case.  
 
That is, the resulting boundary condition for the outer equation (8) becomes 
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This is an extension of the result of Tuck [6] in which the constant depth h is replaced 
by )0,(xh .  
 
If non-symmetric depth changes occur in the y-direction, the inner flow may also 
include a cross-flow, and the matching process becomes more complicated. Further 
research is required in this area. 
 
In the derivation of this theory, no assumptions have been made about the channel 
width. In fact, the theory is equally valid for open water or for very narrow channels; 
in the latter case it becomes equivalent [23] to the one-dimensional theory previously 
described. 
 
3.2 GENERAL NUMERICAL METHOD 
 
The partial differential equation (8), along with the boundary condition (9), can be 
solved using finite-difference methods. As in the one-dimensional case, the equation 
must be solved in a form that will be numerically stable. This can be achieved by 
writing the equation in the form 

 hhhh
g
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and solving for the quantity )( φh . Clearly this method is more suited to smooth depth 
changes because of the h2∇  term. 
 
The boundary conditions on this equation in open water are that the derivatives of φ 
either vanish or behave like an outgoing wave far from the ship. If the finite-
difference equation is being solved in open water, artificial boundaries must be used 
at a sufficient distance from the ship. These boundaries may only be within the 
domain of influence of the ship if non-reflecting boundary conditions are successfully 



 

applied. Otherwise, all φ-derivatives can be set to zero if the boundaries lie outside the 
domain of influence of the ship. 
 
For the case of a ship in a channel, the size of the computational domain in the y-
direction is limited. In this case we specify the boundary condition of zero fluid 
velocity normal to the channel walls.  
 
In a similar manner to the one-dimensional theory previously described, the constant 
depth solution can be used as an initial condition. This is given in [6] as  
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If the ship is in water of non-uniform depth at time t=0, a quasi-steady estimate can be 
obtained by replacing h by the local value )0,(xh  in this expression. Note that hF  is 
also non-constant in this approximation. 
 
Once the velocity potential is solved for at each time step, matching of the inner and 
outer flows shows that the hull pressure is given in earth-fixed coordinates by  
 ),0,( txp tρφ−=  
to leading order. The instantaneous vertical force, moment, sinkage and trim can then   
be found at each time step in the same way as for the one-dimensional theory.  
 
3.3 NUMERICAL METHOD FOR A STEP DEPTH CHANGE IN A CHANNEL 
 
Let us consider the problem of a ship moving along the centreline of a channel and 
passing a step depth change in the x-direction. In this case the flow is symmetric about 
y=0, so we only need consider the region 0>y . In each region of constant depth, the 
partial differential equation (8) becomes 
 )( yyxxtt gh φφφ +=  
which is an ordinary wave equation in two dimensions. 
 
This equation can be centre-differenced to second order, to obtain a time-stepping 
routine for φ in each region. As for the one-dimensional theory, the quantities xhφ and 

tφ  are then required to be continuous across the step. By positioning gridpoints along 
the step, i.e. common to both regions, the continuity of φ and therefore of tφ  are 
assured. The continuity of xhφ is imposed by equating its finite-difference forms in 
each region.  
 
The wall and centreline boundary conditions are enforced by positioning a line of 
gridpoints along each of the boundaries and an extra row of fictitious gridpoints 
outside. In this way the finite-difference method can be applied on the boundaries, 
and the boundary conditions used to eliminate the fictitious gridpoints. This gives a 
consistent second-order solution throughout the domain. 
 
Since this slender-body theory agrees with the one-dimensional theory in the narrow-
channel limit, one-dimensional waves are produced when the ship passes the step in a 



 

narrow channel. In fact, numerical simulations show that this is still true for quite 
wide channels. Therefore, instead of using a very large computational domain in the 
x-direction and setting all φ-derivatives to zero on the upstream and downstream 
boundaries, we instead use a moderate computational domain and the non-reflecting 
boundary conditions 
 0=+ xt ghφφ in 0>x  

 0=− xt ghφφ in 0<x  
This allows any one-dimensional waves produced to pass through the edges of the 
computational domain without reflection. 
 
With this method, the same problems of numerical wave radiation, numerical 
oscillation and drift were encountered as in the one-dimensional case. However, drift 
proved harder to eliminate in two dimensions.  
 
3.4 RESULTS 
 
Simulations were performed for various channel width to shiplength ratios. It was 
seen that for narrow channels the flow field was almost identical to the one-
dimensional theory, with one-dimensional waves being produced as the ship passed 
the step. For wider channels, the flow velocities were significantly larger close to the 
ship, as the steady theory predicts. However, the radiated waves, though very small in 
amplitude, were still completely one-dimensional. 
 
In Fig. 7 we see the form of the transient vertical force on a ship passing a step depth 
change to shallower water in a wide channel. Again, this is also proportional to the 
midship sinkage. In this case the channel width is twice the shiplength, the ratio 
between the two depths is 0.75, and the depth-based Froude number is equal to 0.143 
in the deeper water. We have used arbitrary values of the other ship parameters, as the 
results cannot be scaled as simply as for the one-dimensional theory. 

 
Fig. 7:    Vertical force or scaled midship sinkage for a ship passing a step depth 

change to shallower water in a wide channel. 



 

 
It is seen that the results are quite different than for a narrow channel in the transition 
time between the two steady state values. In this case the ship does sense the presence 
of the step before the bow reaches it, with a smaller midship sinkage initially. The 
effect of the radiated waves is not apparent in this case, since these are negligible at 
this large channel width. Instead the sinkage moves smoothly down and actually 
overshoots the steady shallow-water value. 
 
The small recurring spikes are due to irregularities in the initial conditions. Without 
any damping mechanism, these radiate out to the channel walls and reflect back 
periodically to affect the flow on .0=y   
 
Fig. 8 shows the transient bow-up trim moment for the same case. Again, this is also 
proportional to the transient trim angle. Note that the hull is fore-aft symmetric, so 
that the trim should be zero according to the theory when the ship is not near the step. 
The small residual trim is due to numerical drift. Nevertheless, there is a definite bow-
up trim while the ship is passing the step. 
 

 
Fig. 8:    Bow-up trim moment or scaled trim angle for a ship passing a step depth 

change to shallower water in a wide channel. 
 

It can be seen that the ship’s trim also changes before the bow reaches the step. For 
the symmetric ship, this results in a small bow-up trim both before and after the ship 
passes the step. It is unknown at this stage how the trim will vary for a more realistic 
non-fore-aft-symmetric ship. 
 
The combined effect of the midship sinkage and trim angle gives the bow and stern 
sinkage, or squat. Fig. 9 shows qualitatively how these change between the two 
steady-state values for our cusped hull. 



 

 
Fig. 9:    Bow and stern sinkage for a ship passing a step depth change to shallower 

water in a wide channel. 
 
The small residual difference between the bow and stern sinkages is due to the 
residual trim angle and can be ignored. The results have a similar form to the narrow 
channel case (Fig. 4), except that a more dangerous stern sinkage occurs while the 
ship is passing the step. 
 
4. QUALITATIVE COMPARISON WITH EXPERIMENT 
 
An experimental investigation into squat in non-constant depth (in which the author  
participated) was undertaken by Duffield [18]. Experiments were performed with a 
bulk carrier and a containership, for a step depth change, ramp depth change, or short 
shallow bank. The experiments were performed in a channel whose width was twice 
the ship length, such that slender-body theory would be expected to be more accurate 
than one-dimensional theory in this case. 
 
Some of the experimental results are described qualitatively below, with reference to 
the results of the theoretical treatment described here. Note that at this stage the 
theoretical results are only for a simple fore-aft symmetric ship, rather than the exact 
ship shapes. 
 
4.1 STEP DEPTH CHANGE TO SHALLOWER WATER 
 
For the bulk carrier, the model increased its bow-down trim while approaching the 
step, before rapidly changing to a bow-up trim angle while passing over the step. The 
bow-up trim is in qualitative agreement with the theories for a fore-aft symmetric 
ship. The bow-up trim is clearly a more “forgiving” situation for a ship passing over a 
step depth change to shallower water, as it will decrease the likelihood of grounding.  
 
The experimental sinkage was unexpected: the midship sinkage increased slightly 
before the ship reached the step, whereas slender-body theory predicts it to decrease 



 

slightly. After the ship passed the step, the sinkage did not immediately reach the new 
steady state, as the slender-body theory predicts. The experimental lag in reaching the 
new steady state was witnessed in both the sinkage (for free-to-squat experiments) 
and the vertical force (for vertically fixed experiments). It was seen consistently in all 
experiments, both for the step and the ramp, and was perhaps the most interesting and 
surprising aspect of the testing. Clearly, a lag in reaching the new steady state sinkage 
(which is greater in shallow water) is a more desirable outcome, as it will decrease the 
likelihood of grounding. 
 
The author presently believes that the lag may be due to viscous effects in the thin 
layer of water between the hull and the sea floor, which may retard the time-evolution 
of pressure changes beneath the hull. Further research is required in this area.  
 
4.2 RAMP DEPTH CHANGE TO SHALLOWER WATER 
 
The length of the ramp was roughly 40% longer than the length of the ship models. 
 
For the bulk carrier, the trim was slightly bow-down while the model was passing the 
ramp, before rapidly changing to bow-up as the bow passed the end of the ramp. 
These effects were also witnessed consistently by Ferguson et al [17] during their 
experiments with a bulk carrier passing a ramp.  
 
By comparison, the one-dimensional theory for a fore-aft symmetric hull predicts a 
bow-up trim over the entire ramp. It is not known at this stage how this result will be 
modified for a non-fore-aft-symmetric hull. The observed bow-down trim is a 
dangerous phenomenon, which Ferguson et al [17] concluded may have contributed to 
the grounding of the MV Wellpark in La Plata Estuary in 1977. The present author 
believes that this effect may be due to large local fluid velocities beneath the forward 
section of the bulk carrier, due to its fullness, causing low pressures and a 
corresponding bow-down trim. 
 
For the containership, no such bow-down trim was witnessed. The trim was strongly 
and consistently bow-up over the entire length of the ramp, as predicted by the theory 
for a fore-aft symmetric hull. 
 
5. CONCLUSIONS 
 
A one-dimensional theory has been proposed for studying the squat of a ship in a 
narrow channel of varying depth. This has an analytic solution for a step depth 
change, and can be solved numerically for general depth profiles using a finite-
difference scheme. 
 
A slender-body theory has been discussed which covers two-dimensional depth 
changes, and a numerical scheme introduced for solving the flow field in the general 
case. This slender-body theory reduces to the one-dimensional theory in the narrow-
channel limit. 
 
Results were computed for the case of a cusped fore-aft symmetric ship passing a step 
depth change, according to both theories. The one-dimensional theory was also used 



 

for a ship in uniformly-shoaling water, or passing a ramp between two constant 
depths. 
 
There were several numerical issues which made solution of both theories difficult. 
Artificial numerical wave production was the major problem, which meant that at this 
stage accurate results could only be given for sharp-ended vessels.  
 
Nevertheless, some important unsteady effects were witnessed in the results, such as 
the strong bow-up trim experienced by a fore-aft symmetric ship passing a step or 
ramp depth change to shallower water. These agreed qualitatively with experimental 
research.  
 
Further research is now required to extend the numerical method to handle more 
realistic hull shapes without numerical wave production, so as to study dangerous 
situations such as full-form vessels passing a ramp depth change to shallower water. 
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